On the non-minimal coupling of Riemann-flat Klein-Gordon Fields to Space-time torsion

نویسنده

  • L. C. Garcia de Andrade
چکیده

The energy spectrum of Klein-Gordon particles is obtained via the non-minimal coupling of Klein-Gordon fields to Cartan torsion in the approximation of Riemann-flatness and constant torsion.When the mass squared is proportional to torsion coupling constant it is shown that the splitting of energy does not occur.I consider that only the vector part of torsion does not vanish and that it is constant.A torsion Hamiltonian operator is constructed.The spectrum of KleinGordon fields is continuos. PACS numbers : 0420,0450. Departamento de F́ısica Teórica Instituto de F́ısica UERJ Rua São Fco. Xavier 524, Rio de Janeiro, RJ Maracanã, CEP:20550-003 , Brasil. E-Mail.: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gauge fields on Riemann - Cartan space - times Alberto

Gauge fields are described on an Riemann-Cartan space-time by means of tensorvalued differential forms and exterior calculus. It is shown that minimal coupling procedure leads to a gauge invariant theory where gauge fields interact with torsion, and that consistency conditions for the gauge fields impose restrictions in the nonRiemannian structure of space-time. The new results differ from the ...

متن کامل

ar X iv : h ep - t h / 05 01 08 5 v 1 1 1 Ja n 20 05 Scalar and Vector Massive Fields in Lyra ’ s Manifold ∗

The problem of coupling between spin and torsion is analysed from a Lyra's manifold background for scalar and vector massive fields using the Duffin-Kemmer-Petiau (DKP) theory. We found the propagation of the torsion is dynamical, and the minimal coupling of DKP field corresponds to a non-minimal coupling in the standard Klein-Gordon-Fock and Proca approaches. The origin of this difference in t...

متن کامل

Solving nonlinear space-time fractional differential equations via ansatz method

In this paper, the fractional partial differential equations are defined by modified Riemann-Liouville fractional derivative. With the help of fractional derivative and fractional complex transform, these equations can be converted into the nonlinear ordinary differential equations. By using solitay wave ansatz method, we find exact analytical solutions of the space-time fractional Zakharov Kuz...

متن کامل

Soliton-like Solutions of the Complex Non-linear Klein-Gordon Systems in 1 + 1 Dimensions

In this paper, we present soliton-like solutions of the non-linear complex Klein-Gordon systems in 1+1 dimensions. We will use polar representation to introduce three different soliton-like solutions including, complex kinks (anti-kinks), radiative profiles, and localized wave-packets. Complex kinks (anti-kinks) are topological objects with zero electrical charges. Radiative profiles are object...

متن کامل

Applications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations

  In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998